# LOYOLA COLLEGE (AUTONOMOUS), CHENNAI - 600 034

# M.Sc. DEGREE EXAMINATION – CHEMISTRY

## SECOND SEMESTER - APRIL 2015

## **CH 815 - THERMODYNAMICS**

Time: 09:00-12:00

Dept. No.

Max.: 100 Marks

#### Part-A

## Answer all questions. Each question carries two marks:

(10x2=20)

- 1. Define chemical potential.
- 2. Mention the significance of inversion temperature.
- 3. Calculate the change in the free energy of 2 moles of a substance when its activity changes from 0.05 to 0.25 at 27°C.
- 4. Define phase rule and explain the terms involved.
- 5. What is residual entropy?
- 6. Predict the symmetry number for  $N_2$  and HCl molecules.
- 7. What are Bosons and Fermions? Give an example each.
- 8. Give the importance of collision number.
- 9. What are ortho and para hydrogen?
- 10. Calculatethe ionic strength of 0.05m NaCl.

#### Part-B

## Answer any eight questions. Each question carries five marks:

(8x5=40)

- 11. Derive Gibbs-Duhem equation and mention its importance.
- 12. How is Joule-Thomson coefficient calculated for a van der Waals gas?
- 13. State Nernst heat theorem and mention the need for the third law of thermodynamics.
- 14. Obtain van't Hoff equation to illustrate the temperature dependence of equilibrium constant.
- 15. Derive the relation between partition function and equilibrium constant.
- 16. Asystem containing N identical molecules is cooled to 0 K. Calculate the entropy i) if the energy levels are not degenerate ii) if the degeneracy of each energy level is 2.
- 17. What is Stirling's approximation? Evaluate  $\ln N!$  when  $N = 10^{25}$ .
- 18. Describe the thermodynamic properties of an atomic crystalline system using Einstein's model.
- 19. How is the fugacity of a gas determined?
- 20. Describe the use of Bose-Einstein statistics for a photon gas.
- 21. Define partition function and explain factorization of partition function.
- 22. Calculate the translational partition function of an oxygen molecule confined in a 1 litre vessel at 27°C.

## Part-C

# Answer any four questions. Each question carries ten marks:

(4x10=40)

- 23a. Explain the determination of activity and activity coefficient of non-electrolytes.
- (6)
- b. The equilibrium constant  $K_p$  for the reaction  $H_{2(g)} + S \longrightarrow (g)H_2S_{(g)}$  is 20.2 atm<sup>-1</sup> at 945°C and 9.21atm<sup>-1</sup> at 1065°C. Calculate  $\Delta H^\circ$ .
- 24. Discuss the variation of chemical potential with temperature and pressure.
- 25a. Describe the phase diagram of a two component system and obtain the degrees of freedom in all the regions formed in the phase diagram. (6)
  - b. Calculate the vibrational contribution to the entropy of F<sub>2</sub> molecules at 25°C. Given that the fundamental vibrational frequency is 892.1 cm<sup>-1</sup>. (4)
- 26. Explain the equilibrium theory of the rate of association and dissociation.
- 27. Derive Maxwell-Boltzmann statistics using its assumptions.
- 28. Derive Sackure-Tetrode equation for the determination of translational entropyof a monoatomic gas.